Directions: Show all work for each problem and/or give an AP level explanation. Box your final answers.
The overall dissociation of oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, is represented below. The overall dissociation constant is also indicated.

$$
\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \Leftrightarrow 2 \mathrm{H}^{+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \quad \mathrm{K}=3.78 \times 10^{-6}
$$

1) What volume of 0.400 -molar NaOH is required to neutralize completely a 5.00×10^{-3} mole sample of pure oxalic acid? 25.0 mL
2) Give the equations representing the first and second dissociations of oxalic acid.
3) Calculate the value of the first dissociation constant, K_{1}, for oxalic acid if the value of the second dissociation constant, K_{2}, is $6.40 \times 10^{-5} .5 .91 \times 10^{-2}$
4) To a 0.015 -molar solution of oxalic acid, a strong acid is added until the pH is 0.5 . Calculate the $\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right]$ in the resulting solution. (Assume the change in volume is negligible.) $5.67 \times 10^{-7} \mathrm{M}$
5) Calculate the value of the equilibrium constant, K_{b}, for the reaction that occurs when solid $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is dissolved in water. 1.56×10^{-10}
