Dougherty Valley HS Chemistry - AP Acid Base – An FRQ	Wo	rksheet #3
Name:	Period:	Seat#:
Directions: Show all work for each problem and/or give a	n AP level explanation.	Box your final answers.
The overall dissociation of oxalic acid, $H_2C_2O_4$, is represented by $H_2C_2O_4 \Leftrightarrow 2 H^+ + C_2O_4^{2-}$	elow. The overall dissocia K = 3.78 x 10 ⁻⁶	tion constant is also indicated.
1) What volume of 0.400-molar NaOH is required to neutralize acid? <u>25.0 mL</u>	e completely a 5.00 x 10 ⁻³	mole sample of pure oxalic
2) Give the equations representing the first and second disso	ciations of oxalic acid.	
3) Calculate the value of the first dissociation constant, K ₁ , for constant, K ₂ , is 6.40 x 10 ⁻⁵ . <u>5.91×10⁻²</u>	r oxalic acid if the value of	the second dissociation
 To a 0.015-molar solution of oxalic acid, a strong acid is ac 	ded until the pH is 0.5. Ca	alculate the [$C_2O_4^{2-}$] in the
resulting solution. (Assume the change in volume is negligi	ible.) <u>5.67×10⁻⁷ M</u>	
5) Calculate the value of the equilibrium constant, K _b , for the water. <u>1.56×10⁻¹⁰</u>	reaction that occurs when	solid Na ₂ C ₂ O ₄ is dissolved in